The problem is that they learn the Distributive Property and like it so much that they apply it to everything imaginable. |

Pointing out the existence of another distributive property was important to drive home the point that, yes, there is more than one distributive property--

**exactly one more!**The order of operations provides a way to understand that the second DP (abbreviation for Distributive Property) exists because of the "niceness" of math.

The above are five more DPs, but they aren't distinct. Each can be derived from the two discussed previously. Below is a cute way of seeing how similar the "new" DP is in form to the "original" DP. |

At the left is showing that "nPow" in the previous

discussion isn't far-fetched. LOTS of everyday math functions have 3- or 4-letter names.

And when you translate the symbols into the words that also can define them, you find six more "distributive-looking" equations.

NOT ONE of them is true for all x and y because none can be derived from the two DPs discussed so far. Admittedly some of the equations on the left don't resemble their literal counterparts; thought has to enter the picture. Big problem for s

NO OTHER FUNCTION WORKS THIS WAY. At least none for high school. |

## No comments:

## Post a Comment